214 research outputs found

    A position- and time-sensitive photon-counting detector with delay-line read-out

    Get PDF
    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and AstronomyComment: Proceedings of SPIE Conference "Optics and Optoelectronics", 16 - 19. Apr.200

    Seasonal activity patterns of the frog, Crinia signifera (Anura: Myobatrachidae), in southern Tasmania, Australia

    Get PDF
    We investigated the seasonal adaptations of the myobatrachid frog Girard, 1863 in a commercial forest in southern Tasmania, Australia. Seasonal variation in activity patterns, body size and body condition was investigated. Although C does not hibernate over winter, activity levels arc much reduced during this time. Females trapped in summer were smaller than those captured throughout the remainder of the year. We interpreted seasonal variation in the condition of captured frogs as an indication that breeding in spring and early summer is metabolically costly and fat stores are replenished by extensive foraging in summer. Fat stores accumulated in summer and autumn by males are used for body maintenance over winter and breeding in the following spring

    Lattice Properties of PbX (X = S, Se, Te): Experimental Studies and ab initio Calculations Including Spin-Orbit Effects

    Full text link
    During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.Comment: 25 pages, 12 Figures, 1 table, submitted to PR

    Vibrational and Thermal Properties of ZnX (X=Se, Te): Density Functional Theory (LDA and GGA) versus Experiment

    Full text link
    We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab initio techniques. These relations have been used to evaluate the temperature dependence of the respective specific heats of crystals with varied isotopic compositions. These results have been compared with mea- surements performed on crystals down to 2 K. The calculated and measured data are generally in excellent agreement with each other. Trends in the phonon dispersion relations and the correspond- ing densities of states for the zinc chalcogenide series of zincblende-type materials are discussed.Comment: 10 pages, submitted to PR

    Electronic and phononic properties of the chalcopyrite CuGaS2

    Full text link
    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev

    Isotopic-mass dependence of the A, B, and C excitonic band gaps in ZnO at low temperatures

    Get PDF
    Low temperature wavelength-modulated reflectivity measurements of isotopically engineered ZnO samples have yielded the dependence of their A, B, and C excitonic band gaps on the isotopic masses of Zn and O. The observed dependence is analyzed in terms of the band gap renormalization by zero-point vibrations via electron-phonon interaction and the volume dependence on isotopic mass. A simplified, two-oscillator model, employed in the analysis, yields zero-point renormalizations of the band gaps, -154 +/- 14 meV (A), -145 +/- 12 meV (B), and -169 +/- 14 meV (C), for ZnO with natural isotopic composition

    Heat Capacity of PbS: Isotope Effects

    Full text link
    In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of the specific heat (CpC_p, CvC_v) of monatomic crystals such as diamond, silicon, and germanium, similar investigations have been undertaken for the tetrahedral diatomic systems ZnO and GaN (wurtzite structure), for which the effect of the mass of the cation differs from that of the anion. In this article we present measurements for a semiconductor with rock salt structure, namely lead sulfide. Because of the large difference in the atomic mass of both constituents (MPbM_{\rm Pb}= 207.21 and (MSM_{\rm S}=32.06 a.m.u., for the natural isotopic abundance) the effects of varying the cation and that of the anion mass are very different for this canonical semiconductor. We compare the measured temperature dependence of CpCvC_p \approx C_v, and the corresponding derivatives with respect to (MPbM_{\rm Pb} and MSM_{\rm S}), with \textit{\textit{ab initio}} calculations based on the lattice dynamics obtained from the local density approximation (LDA) electronic band structure. Quantitative deviations between theory and experiment are attributed to the absence of spin-orbit interaction in the ABINIT program used for the electronic band structure calculations.Comment: 17 pages including 10 Fig

    Markovian kinetic equations in a nonequilibrium statistical ensemble formalism

    Get PDF
    The nonlinear quantum kinetic theory for many-body systems either near or far from equilibrium that a nonequilibrium ensemble formalism provides is revisited. In this communication we consider an important limit of such transport equations, consisting of the memoryless approximation, which leads to the so-called Markovian kinetic equations. They are derived in Zubarev's approach to the method, and next applied to a particular model of a spin system in interaction with a thermal bath of lattice vibrations. The limitations of the approach, as well as some criticism it has received, are discussed.573B3637364
    corecore